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Field theory (without gauge) 1

The relevant data:

• A spacetime manifold M (e.g. globally hyperbolic);

• A bundle E over M (typically a vector bundle);

• Field configurations, i.e. global sections of E ;

• A partial differential equation (e.g. linear and hyperbolic)
specifying the “time-evolution” of field configurations.

A basic example, the scalar field:

• Consider the trivial vector bundle M × R→ M;

• A section is a smooth function φ : M → R;

• Dynamics specified by the d’Alembert operator: �φ+ m2φ = 0.
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Field theory (without gauge) 2

Observation:

• Field configurations form a set (possibly with further structure).

• There is a strict notion of equality between points of a set.

Crucial fact: One can compare field configurations on the nose!

General abstract non-sense:
In the language of category theory, a set is a category whose objects
are the points and whose morphisms are only identities.

Back to the scalar field:

• C∞(M;R) is the set of field configurations (before dynamics).

• One can decide whether the equality φ = φ′ holds or not.
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Field theory (without gauge) 3

• You are given a manifold M with an open cover {Uα};
• On each Uα, a scalar field φα ∈ C∞(Uα;R) is provided;

• φα = φβ on Uαβ = Uα ∩ Uβ holds.

Then you can glue the data {φα} to form a global φ ∈ C∞(M;R):

φ = φα on each Uα.

We can abstract from our notion of field theory (w/o gauge):

A sheaf is a functor C from Manop to Sets fulfilling the following
condition for each manifold M and each cover {Uα} of M:

C(M)
'−→ lim

(∏
α

C(Uα)→→
∏
αβ

C(Uαβ)
)
.
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Observables for field theory (without gauge)

Observables are (a suitable algebra of) functionals on configurations.
Configurations form a sheaf, dually observables should form a cosheaf:

Global observables are equivalent to (co)gluing local ones:
O : Man→ Alg is a functor such that

O(M)
'←− colim

(∐
α

O(Uα)←←
∐
αβ

O(Uαβ)
)
.

This idea is not new:

Fredenhagen’s universal algebra (1982): The global algebra of
observables O(M) can be reconstructed from the local ones O(Uα).

However, for non-gauge theories, e.g. the scalar field, we are usually
able to understand global configurations and observables directly.
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Gauge field theory 1

The relevant data:

• A spacetime manifold M (e.g. globally hyperbolic);

• A principal G -bundle P over M with connection A;

• Field configurations are pairs (P,A);

• Gauge transformations given by g : (P,A)
'−→ (P ′,A′);

• A partial differential equation specifying the dynamics (e.g.
hyperbolic after a suitable gauge fixing).

A basic example, Yang-Mills on a contractible manifold M:

• Consider the principal bundle M × G → M with connection A;

• A is specified by a one-form on M with values in g;

• A gauge transformation is specified by a smooth function
g : M → G such that A′ = g A g−1 + g d g−1;

• Dynamics via curvature: F = dA + A ∧ A, d ∗F + A ∧ ∗F = 0.
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Gauge field theory 2

Observation:

• Field configurations form a category (in fact, a groupoid).

• There is no notion of equality for objects in a category, but we
have equivalences given by isomorphisms.

Crucial fact: No way to decide whether two gauge configurations
are equal, but one can still compare with gauge transformations!

Back to Yang-Mills:

• G − Bunconn(M) is the groupoid of bundle-connection pairs (P,A)
together with gauge transformations.

• (P,A) = (P ′,A′) does not even make any sense, however one can
still decide whether (P,A) ' (P ′,A′) or not by exhibiting an iso.
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Gauge field theory 3

• You are given a manifold M with an open cover {Uα};
• On each Uα, a bundle-connection pair (Pα,Aα) is provided;

• On each overlap Uαβ a gauge transformation

gαβ : (Pα,Aα)
'−→ (Pβ,Aβ) is provided;

• Consistency condition on each triple overlap Uαβγ : gβγ gαβ = gαγ .

Then you can glue all (Pα,Aα) to form a global (P,A):

P =
(∐
α

Pα
)
/ ∼gαβ

, A = Aα on Uα.

Of course, the pair (P,A) we obtain is specified only up to (a
unique) isomorphism!
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Gauge field theory 4

With this in mind, we abstract from our notion of gauge theory:

A stack is a (pseudo)functor C from Manop to Gpds (groupoids)
fulfilling descent for each manifold M and each cover {Uα} of M.
Roughly speaking, one can always glue coherent local data to global
data up to a unique isomorphism.

By [Hollander, Israeli J. Math. 163 (2008) 63], this is equivalent to:

A homotopy sheaf is a functor C from Manop to Gpds fulfilling the
following condition for each manifold M and each cover {Uα} of M:

C(M)
'−→ holim

(∏
α

C(Uα)→→
∏
αβ

C(Uαβ)→→→
∏
αβγ

C(Uαβγ)
→→→→ . . .

)
.
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Model categories

These are categories with a model structure:

• Three distinguished families of morphisms: fibrations, cofibrations
and weak equivalences

subject to some axioms:

1. All limits and colimits exist;

2. The families of morphisms are stable under retraction;

3. Two-out-of-three property for weak equivalences;

4. Left lifting property for fibrations and cofibrations;

5. Factorization of morphisms.

The crucial data is the choice of weak equivalences:
Out of a model category C, one can form its homotopy category
Ho(C) with the following universal property: There is functor
C→ Ho(C) sending weak equivalences to isomorphisms.
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Examples of model categories

Remark:

• There is in general no unique model structure;

• Given the class of w.e.s and another class of morphisms, the third
one is specified by the left-lifting property.

1. Topological spaces with weak (or strong) homotopy equivalences
as weak equivalences;

2. Simplicial sets with weak homotopy equivalences via geometric
realization as weak equivalences;

3. Groupoids with equivalences of categories as weak equivalences;

4. Chain complexes of R-modules with quasi-isomorphisms as w.e.s.



Homotopy (co)limits

These are nasty things to define, but one can still find “formulas” to
compute them.

Roughly speaking, one wants a “softer, more flexible” analogue of a
(co)limit. Instead of being stable with respect to isomorphism, it
should be stable with respect to weak equivalences.

A rigorous general definition is not quite easy to digest. We will use
existing “recipes” to compute homotopy (co)limits of interest.

Typically, such recipes are based on the fact that one can find good
replacements (fibrant or cofibrant) of the diagrams of interest. Then
computing the homotopy (co)limit of the original diagram reduces to
computing the ordinary (co)limit for the replacement.
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Observables for gauge theory: Motivation 1

First physical input:
Only gauge invariant information should be “measurable”.

We have (at least) two reasonable options:

1. Pass to the set of isomorphism classes and describe functionals
(automatically gauge invariant) on it, i.e. take the “brutal”
quotient by gauge transformations.

2. Carry configurations and equivalences altogether until the end
of your construction and then focus on gauge invariant observables.

Advantages and disadvantages:

1. Typically the quotient is geometrically badly behaved and we lose
descent (no way to glue isomorphism classes);

2. Configurations and equivalences together form nice geometric
objects with good descent conditions, however it is harder to work
with groupoids rather than just sets.
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Observables for gauge theory: Motivation 2

Second physical input:
“Measurable” quantities should be locally accessible, meaning that we
don’t need a lab as large as the universe to investigate its properties.

This requirement indicates that carrying configurations and gauge
transformations together is a favorable approach. In fact, having
good descent properties still available, we can in principle make our
“measurements” locally and then glue the information we extract.

Nice geometry is important:
Furthermore, the fact that one has nicer geometric structure is crucial
especially for non-Abelian gauge theories, as non-linearities require a
choice of functionals which are regular enough.
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Field theory (w/o gauge) vs. gauge field theory

no gauge gauge

configurations sets groupoids
descent gluing on the nose (lim) gluing up to gauge (holim)

observables from local ones via colim from local ones via hocolim

We take this as a definition of global gauge observables:

O(M)
'←− hocolim

(∐
α

O(Uα)←←
∐
αβ

O(Uαβ)←←←
∐
αβγ

O(Uαβγ)
←←←← . . .

)
.

Net advantage: Complicated groupoids of gauge theory on arbitrary
manifolds, however much easier on contractibles. Understand global
observables by looking at the easy groupoids on contractibles!
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The broad picture

Going one step higher in category theory:
We have seen gauge field theory as a generalization of field theory
(without gauge), where sets of configurations (with their gluing
conditions) are replaced by groupoids of configurations together
with equivalences (with gluing conditions modified coherently).

This approach can be made more general by going higher to 2-, 3-,
. . . categories. What one gets are higher stacks encoding suitable
descent properties.

Examples:

• bundle gerbes;

• bundle gerbes with connective structure;

• higher analogues.
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The groupoids of gauge theory on contractibles

G a (matrix) Lie group, g its Lie algebra, U a contractible manifold.

Observations:

• Each principal G -bundle P over U is isomorphic to the trivial one;

• Connections are described just by gauge potentials A ∈ Ω1(U; g);

• A gauge transformations is just a smooth function g ∈ C∞(U;G ).

• The action of gauge transformations on connections is

ρ : C∞(U;G )×Ω1(U; g) −→ Ω1(U; g), ρ(g ,A) = g A g−1+g d g−1.

We obtain an action groupoid:

Objects The set Ω1(U; g) of gauge potentials;

Isomorphisms The set C∞(U;G )× Ω1(U; g);

Action (A, g) : A −→ ρ(A, g);

Smoothness It can be endowed with the structure of a Lie groupoid.
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Changing perspective

It is not clear (at least to me) which is the correct category to model
“functions on groupoids”. However, one can present groupoids as
simplicial sets (even simplicial manifolds for Lie groupoids). Then
the functions on them form cosimplicial algebras.

The simplicial set associated to the gauge groupoid on U:

Ω1(U; g)←← C∞(U;G )× Ω1(U; g)←←← C∞(U;G )×2 × Ω1(U; g)
←←←← · · ·

This comes together with face maps ∂ni (displayed) and degeneracy
maps εni (implicit):

∂ni : C∞(U;G )×n × Ω1(U; g) −→ C∞(U;G )×n−1 × Ω1(U; g),

(g1, . . . , gn,A) 7−→ (g1, . . . , gi gi+1, . . . , gn,A);

εni : C∞(U;G )×n × Ω1(U; g) −→ C∞(U;G )×n+1 × Ω1(U; g),

(g1, . . . , gn,A) 7−→ (g1, . . . , gi , e, gi+1, . . . , gn,A).



Changing perspective

It is not clear (at least to me) which is the correct category to model
“functions on groupoids”. However, one can present groupoids as
simplicial sets (even simplicial manifolds for Lie groupoids). Then
the functions on them form cosimplicial algebras.

The simplicial set associated to the gauge groupoid on U:

Ω1(U; g)←← C∞(U;G )× Ω1(U; g)←←← C∞(U;G )×2 × Ω1(U; g)
←←←← · · ·

This comes together with face maps ∂ni (displayed) and degeneracy
maps εni (implicit):

∂ni : C∞(U;G )×n × Ω1(U; g) −→ C∞(U;G )×n−1 × Ω1(U; g),

(g1, . . . , gn,A) 7−→ (g1, . . . , gi gi+1, . . . , gn,A);

εni : C∞(U;G )×n × Ω1(U; g) −→ C∞(U;G )×n+1 × Ω1(U; g),

(g1, . . . , gn,A) 7−→ (g1, . . . , gi , e, gi+1, . . . , gn,A).



Observables for gauge theory on contractibles

Consider the functor C : Setsop → Alg sending each set to the algebra
of C-valued functions on it. Applying this functor at each level of the
simplicial set immediately provides a cosimplicial algebra:

C
(
Ω1(U; g)

)→→ C
(
C∞(U;G )× Ω1(U; g)

)→→→ · · · ,
with coface maps d i

n = C (∂ni ) (displayed) and codegenaracy maps
e in = C (εni ) (implicit in the notation).

For nice groupoids, say Lie groupoids, we may even choose smooth functions. This

is crucial for non Abelian gauge theory, however not needed in the Abelian case.

Cosimiplicial algebras are a model category, so we can in principle
compute our homotopy colimits, however the model structure is not
quite easy to handle!
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Recapitulating. . .

Start Groupoids of gauge configurations on contractibles;

Goal Define observables on a generic manifold computing a
homotopy colimit for a contractible cover.

We propose the following approach:

1. On a contractible manifold, gauge configurations can be arranged
into a nice and simple action groupoid (even smooth);

2. Passing to simplicial sets (or manifolds), we get a good handle on
the categorical structure for “functions on groupoids”;

3. In fact, by taking functions at each level of the simplicial set, one
gets a cosimplicial algebra;

4. Unfortunately, this is not so easy to handle!
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Abelian gauge theory

To circumvent the difficulties with cosimplicial algebras, we assume
G = U(1). Then:

1. The action by gauge transformations boils down to
ρ(A, g) = A + g−1 d g ;

2. The simplicial set becomes in fact a simplicial Abelian group;

3. Instead of arbitrary C-valued functions, we can take smooth
U(1)-valued group homomorphisms;

4. The cosimplicial algebra is replaced by a cosimplicial Abelian group;

5. Via dual Dold-Kan, we end up in non-positively graded chain
complexes of Abelian groups.

With CHAIN complexes, you can compute like a CHAINpion”!

In fact, for this model category we have rather explicit formulas.
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The relevant chain complexes

U contractible manifold of dimension m, G = U(1).

For configurations we have the normalized Moore complex:

0←− Ω1(U; g)0
δ←− C∞(U;G )1 ←− 0,

g d g−1 ←− [ g .

For observables we have the conormalized Moore complex:

0←− Ωm
c,Z(U; g∗)−1

δ∗←− Ωm−1
c (U; g∗)0 ←− 0,

dϕ←− [ ϕ.

Pairing: 〈χ⊕ ϕ,A⊕ g〉 = exp
( ∫

U

(
A ∧ ϕ+ log(g)χ

))
.
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A mathematical “experiment” 1

For configurations:

1. Recall the non-neg. graded chain complex of Abelian groups for
U(1)-gauge theory on contractible manifolds;

2. Take a manifold M and cover it by all its contractible open subsets;

3. This cover provides a diagram in chain complexes describing
U(1)-gauge configurations on each contractible region of M;

4. Compute its homotopy limit to reconstruct global gauge
configurations on M from local ones.

Results:

• holim spits out a functor from Manop to chain complexes;

• On contractible manifolds the output of the homotopy limit is
weakly equivalent to the input;

• The homotopy limit reproduces all bundle-connection pairs.
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A mathematical “experiment” 2

For observables:

1. Consider the non-pos. graded chain complex of Abelian groups
describing observables for U(1)-gauge theory on contractibles;

2. Take a manifold M and cover it by all its contractible open subsets;

3. This cover gives rise to a diagram in chain complexes describing
observables on each contractible region of M;

4. Compute its homotopy colimit to produce global observables for
Abelian gauge theory on M.

Results:

• hocolim spits out a functor from Man to chain complexes;

• On contractible manifolds the output of the homotopy colimit is
weakly equivalent to the input;

• The homotopy colimit detects all U(1)-bundle-connection pairs.
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In summary. . .

• Homotopical algebra is a good framework for gauge theory;

• Global configurations arise via homotopy limit from coherent data
subordinate to a cover by contractible open subsets;

• Dually, global observables can be obtained via homotopy colimits
from observables on contractible open subsets;

• Advantage: Gauge theory is easy on contractible manifolds.

• Disadvantage: Homotopy (co)limits are not so easy to work out.

In the next part:

• To make the computation tractable, we take Abelian gauge theory;

• We determine global configurations up to gauge computing the
holim we just discussed;

• We produce observables capable of detecting all configuration up
to gauge computing the hocolim we just discussed.
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